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Résumé du cours N-COMPLEXES
Michel DUBOIS-VIOLETTE

After a brief survey of some aspects of the
(homological) BRS methods in physics, we in-
troduce the basic notions on N-complexes. We
describe the Kapranov monoidal structure for
N-complexes and we explain in this framework
our joint work with Richard Kerner on the cor-
responding generalization of graded differential
algebras.

We then describe our work with Marc Hen-
neaux on the N-complexes of tensor fields of
mixed Young symmetry type which generalize
the complex of differential forms on R™ and
we explain the corresponding generalization of
the Poincaré lemma. We give several applica-
tions of the latter in theoretical physics and in
differential geometry.



We introduce the family of N-complexes asso-
ciated with simplicial modules at root of the
unit and explain how they compute the ho-
mology of these simplicial modules. We give
several applications and in particular a physi-
cally inspirated one developed in collaboration
with Ivan Todorov which relies to spectral se-
quences methods for N-complexes.

We move to our joint work with Roland Berger
and Marc Wambst on the homogeneous al-
gebras and we explain in details why the N-
complex generalization of the Koszul complexes
of quadratic algebras is conceptually involved
and practically unavoidable here.

We then describe our work with Alain Connes
on the cubic Yang-Mills algebra and discuss
some higher degree generalizations.



Ref : [22].

Ref : [1], [4].

I - PHOTONS




Photon 1-particle space

Cy = {plg"pupv = pg —p* =0, po >0}
1 )3 d3p

D
duo(p) = (—) LF H=/ duo(p)H
to(p) (zw 20 o, to(p)Hyp

Hp = Zp/Bp 2-dimensional Hilbert space
Z,={A, € CHplA, =0} CC,=C*
By = {puple € C} C Zp
Indefinite scalar product of Cp
(A|A)) = —g" A A,

Positive on Z, with isotropic By
= induces a Hilbert structure on Hy



H as a homology

Define

Q(A), = pup’ Ay =< A|QA' >=< QA|A" >
and Q2 =0

(Cp, Qp) differential vector space with homol-
ogy H(Cp) = Hp

= H as the homology of C
— OK at 1-particle level

Triplet (Cp, Zp, Bp) with indefinite < | > in con-
nection with indecomposable group represent.



1-particle complex (Ghosts)

Cp=CpltaC)aecH

0 _ — 4 -1 _ +1 _
cd=c,=C* cyl=c, ,gfl=cC

e (real) canonical basis of C*
w*) basis of CF

op:Cp —Cptl 52 =0
5pw(+) =0, et = ozp“w(‘H, 5pw(_) = ppct
(v € C\{0})

= H(Cp) = H°(Cp) =Hyp

= another description.

In coordinates cw(—) + Apet + cwo(1)

0c =0, 0A, = puc, dc = oszA)\



Hermitian scalar product

One defines (|) on C) by setting

(WY =0, (WHeHy =0,
W) = —a™t, (He") = —g",

<€M|w(+)> =0, (w(+)|w(+)> —0

dp is then hermitian.

Now one can take tensor products

= natural necessity of ghosts (= graduation)



II - CONSTRAINTS

Ref : [22], [18].

Ref : [30], [38], [10], [56], [54], [29], [39], [57].



Reduced phase space

V C M symplectic w = symplectic form

wy = t'w, E(V) ={X € T(V)|ixwy = 0}
dwy = 0 = £(V) involutive = Foliation F of V

Mo = V/f, wo = DI’O_](wv)
(Mg, wp)= reduced phase space
Construction of C°°(My) (=observables) by al-

gebraic homological methods = 2 stages

1. restriction from M to V
2. passage from V to V/F



Koszul resolution of C°°(V)

V C M closed, I(V) ={feC>®(M)|f [V =0}
(Ro)
I(V) generated by uq € C*°(M) a € {1,...,m}
such that dui A--- Adum(xz) Z0 Ve € V
E = R"™® C®(M) free C°(M)-module with
canonical basis mq, a € {1,...,m}

u € E* defined by u(ma) = uq extends uniquely
as graded derivation d, of AR™®C°° (M) which
is C°°(M)-linear and one has d2 =0

= complex K(u) = (AR C*°(M), d,) of free
C>®°(M)-modules

LEMMA 1 H"(K(u)) =0 forn>1 and
HO(K (u)) = C®(M)/1(V) = C®(V)

i.e. K(u) — C*®(V) — 0 is a free resolution of
the C°°(M)-module C°°(V)
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Longitudinal forms

V equipped with foliation F

(AF)+ ={forms vanishing on F} is a differ-
ential ideal = Q(V,F) = Q(V)/(AF)+ graded
differential algebra of longitudinal forms
Q(V,F) is a C*°(V)-module

HO(V, F) ~ C®(V/F)

(Ry) F is a free C°°(V)-module of rank m/
(R1) = C®(V) @ AR™ ~ Q(V, F)

¢, basis of F, 9% dual basis identifies to the
basis of R™'. The 6% generate Q(V,F) and

Cdpf = ()0, fe (V)

dp6® = —5C5 0% 07

with [fﬁ/,f,),/] = Cg,v,ga/
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Subquotient

M DV, F foliation of V with (Rg) and (R7)
IC = EBijj/Ci’j with

Kid = A—TR™ @ C°(M) @ ANR™, for i < 0 < j
and K% = 0 otherwise.

wa,ea’ basis of R™ and R™
dp = unique antiderivation with ogmq = uaq,
500 = 0 and 6of = 0 for f € C®(M)

Lemma 1 = H(dg) = COO(V)®/\RT”/ = Q(V,F)

LEMMA 2 There are antiderivations o, of bide-
gree (1 —r,r) for r > 1 such that

ZT—I—szn 0r0s = 0, Vn € N

and such that 61 induces dr on H(6g) = Q2(V,F)
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Let us extend ¢, and Cg’/v’ as fa/, ~g‘,l,y, c C®(M)
and set

[ S1f =E,(f)OY, Ve C®(M)

o — 17 o8 oy
\ 519 20/3/7/0 9
(6061 + 6190) f = 00d1f =0,
(6001 + 6190)0Y = 6gd160“ = O

51507'('@ — 5171/04 — ga/(UQ)ea/ which = OonV
= 01007 = Ag,auﬁea’ for some Ag,a c C°(M)
setting

617'('@ — _A/B

oo

WBGO‘

one has 6160 + dgd1 = 0 on the generators and
the corresponding antiderivation coincides with
dj: one H(5o)
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The rest of the proof follows by induction on
n using

Hl—T,T+1(5O) — O — Hl—?“,’l“—l—2(50)

for r > 2
Notice that §, =0 forr>m/ orr>m+41

THEOREM 1 § = Y,50 4, is a differential of
K and H(8) = H(K,§) ~ H(V, F)

K = ®&nK" (K" = ®;4,;=,K"7) is a graded alge-
bra and (K,6) is a graded differential algebra.
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Super phase space

(M,w), VCM=F

Assume (Rg) and (R71)
m>m/, m+m =dim(M) —dim(Mpy) = 2p

Coisotropic case {I(V),I(V)} C I(V)
i.e. first class constraints

= m =m' and (RO) = (R1)

Extending the Poisson bracket to I via
(70,05} = 64, {ma, w3} = {6%,0°} = O

{7.‘-067]0}:{90[7]0}:0

as super Poisson bracket.
= I = “functions” on a superphase space
s ={Q, ¢}, Yo € K for Q = §(mab®) € K1

Arbitrariness of the whole construction = canon-
ical transf. of the super phase space.
15



Appendix

(M,w) symplectic, V.C M
I(V)={feC>(M)|f IV =0}
LV)={feC?WM){f, I(V)} CI(V)}

LEMMA 3 One has C®°(V) = C®(M)/I(V)
and I1(V') is an ideal of C°°(M) stable by {e, e}

Notice that (I(V))2 c I1(V) and that
supp (f)NV =0= feI1(V)

LEMMA 4 One has F = Ham(I1(V)) |V

(in TT(M) | V) and the corresponding

I (V) — F is a homomorphism of Lie algebras
and of C*°(M)-modules.
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Complement : van Hove phenomenon

Impossibility of a canonically-invariant quanti-
zation

THEOREM 2 P = Poisson alg. of complex
polynom. functions on R2™ (coordin. pu,q”);
A = unital associative C-algebra.

Q:P— A, C-linear such that Q(1) = 1 and
QU{f, 9}) = £[Q(), Q(9)],Vf,g € P (h € C\{0}).
Then the commutant of the Q(pu) and the
Q(gY) in A is a noncommutative subalgebra

Z(X,Y) € A[XH:Y;] defined by

Z(X,Y) = exp(—iQ(pX—qY))Q(exp(i(pX—qY)))

= [Q(pw), Z(X,Y)] = [Q(¢"), Z(X,Y)] =0

But

e~ i3(XY'=XV) 70 x VY Z(X! Y= ((X,Y) S (X, Y")
— (XY — X'Y)Z(X + XY + Y

= [Z(X,Y), Z(X',Y)] #0 (h#0).
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III - N-DIFFERENTIALS

Ref : [22], [20], [25], [19], [21].
Ref : [51], [52], [40], [43], [61].

Note : Lemma 3 of this section uses the no-
tion of g-numbers and the assumption (A7)
which are defined in the next section.
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N-differentials

FE = K-module, d € End(FE) is a N-differential
if &V =0; (E,d) is a N-differential module
= Generalization of homology

pH(E) = H,(E) = Ker(dP) /Im(d"~P)

ped{l,...,N -1}

H(p)(E) (resp. H(N_p)(E)) is the homology in
degree O (resp. 1) of the Zy-complex

N—
g £ g 4" g

Il [ [
Eqg E4 Eqg

More generally, N-differential object in an abelian
category C
(E,d),E € 0b(C),d € Hom¢(E, E) with ¢ = 0.
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First examples

(E',d") € N'-diff.mod, (E”,d") € N"-diff. mod
e (E’(X)E”,d’@[”—l—[’@d”) c (N’—I—N”— 1)-
diff.mod.

= construction of N-diff.mod. from (N — 1)
ordinary differential modules (E;,d;)

_ _ 1—1 N—1—1
E=oN 'E, d=xN 1119 9deI®
K a field, (E,d) € N-diff. vector space with

dim(F) < oco. Decomposing E into indecom-
posable factors for d = E ~ ®_ K" @ K"n,

: Op_1 In_
d ~ ®N_,Dn ® I, With Dy, = (-”O ' Qg_ll )

PROPOSITION 1 One has for 1 <k < N/2

20



A basic lemma

(E,d) N-differential module

Z(n) = Ker(d"), B(n) = Im(dN_"),
Heny = Z(n)/ Bn) = Hny (E)

Z(n) © Z(m+1) Bn) © Bnt)
Znt1) ©Z(n) Bwt) © B

LEMMA 1 Let ¢ and m be integers with
£>1 m>1and 4+ m < N —1. Then the
following hexagon (H%™) of homomorphisms

Hp1m)(E) Hy)(E)
H( n) (E> H(]\ —m) (E>
W‘m [d]
Hn_¢(E) NP Hn—(04m))(E)

IS exact.
21



Connecting homomorphism

Abelian category of N-differential modules

PROPOSITION 2 Let 0 - EA F Y% G =0
a Short exact sequence of N-diff. modules.
4 homomorphisms O : H(m)(G) — H(N_m)(E)
form € {1,...,N — 1} such that the following
hexagons (‘Hy,) of homomorphisms

Hiu(F) —— H,(G)
e T
H,(E) Hn_n)(E)

Hin_n)(G) T Hin_n)(F)

are exact, forn e {1,...,N — 1}.

N—n
E — Zp-complex E(,y : ELEE

5 | Ho)(G) — Hiy_n)(E)
| Hv—n)(G) — H,(E)

homomorphism of the corresponding short ex-

act sequence of Zo-complexes

0= Ewm) = Fn) = Gy = O

is the connecting
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Homotopy

E, F' are N-differential modules

A\, o E— Fhomomorphisms of N-diff. mod.
A and p are homotopic if there are module-
homomorphisms h; : E — F' such that

N—-1
A—p= Y dV 1 Fnd"
k=0

LEMMA 2 Let \,u : E — F be homotopic.
T hen one has

Ay = M - H(n>(E) — H(n)(F),Vn -~ {1, Ceey N—l}
COROLLARY 1 Let E be a N-differential
module such that there are module-endomorphisms

hy : E — E satisfying Y03 dN~17Fp,dF = Idp.
Then one has H(n)(E) =0,Vne{l,...,N—1}.

23



A useful acyclicity criterion

LEMMA 3 Suppose that K and q € K satisfy
(A1) and let E be a N-differential module such
that there is a module-endomorphism h of E
such that hd — qdh = Idg. Then H(n>(E) = 0,
Vn e {1,...,N — 1}.

In fact in the unital associative K-algebra A,
generated by H, D with relations HD—qDH = 1
one has

N—1
S DNTITRN=Ipk = [N — 1]4'1
k=0

which implies the result.

To show this, it is sufficient to verify the iden-
tity in an appropriate homomorphic image of

Aq

24



First applications of the basic lemma

PROPOSITION 3 Let ¢ : E — E' hom. of
N-diff. mod. such that it induces isomor-
phisms

ox 1 Hay(E) = Hpy(E),
px : Hiy_1y(E) — Hy_1)(E').

Then @« H,)(E) — H(n)(E’) iS an isomor-
phism ¥Yn € {1,..., N — 1}.

Use H™! of Lemma 1 for 1 <n < N —1 to
obtain the result by induction on n > 1.

PROPOSITION 4 Let FE be a N-diff. mod.
with H, (E) = 0 for some k € {1,...,N — 1}.
T hen H(n)(E) =0 Vned{l,...,N—1}.

Use H1F~1 to show H(,y(E) =0 for 1 <n <k
and then H1* to show that H; 4 1y(E) = 0.

25



IV - N-COMPLEXES

Ref : [22], [20], [25], [19], [21].

Ref : [51], [52], [40], [43], [61].
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N-complexes

E = @, c7FEn is Z-graded with N-differential

—1 chain N-complex
d homogeneous of degree ¢ or

+1 cochain N-complex
(in the latter case the graduation is denoted in

exponent i.e. E = @E"™)
=p H(E) = H(p)(E) is Z-graded

Ly-complex if B = @,¢cz,En is Z-graded
(Zy = Z/NZ) with d homogeneous of degree
F1 (chain / cochain)

The H(FE) = H(p)(E) are Zy-graded

Zn-compl C N-compl (subcategory)
@[n]EZNF[n] — DpeNdn, (Fn, = F[n] Vn € [n])
N-compl — Zp-compl adjoint functor
DneNbn = Oplezn L] Lin] = Pneln)fn

27



g-numbers

g e K [0 : N—=K, n— [n]q
[0l =0, [n]qg= ZZ;(l) g~ for n > 1

Set [n]q! = [1}—1[k]q and define

:7,] for 0 < m < n by induction by setting
q

”] =[”] —1landforo<m<n-—1
_O n

[ n m—41 n | n+1
et e =03,

We shall make frequently use of the following
assumptions for K and g € K, N € Nwith N > 2
(Ag) [N]g=0

(A1) [Nlg=0and3[n];t e Kfor1<n<N-1

(A4g) = ¢V =1=3¢ 1K

(Ag) (resp. (A7)) for K and ¢ € K & (Ap)
(resp. (A7)) for K and ¢~ € K (given N as
above).
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EF = &, E™ graded K-module
F, G two K-modules
EFEQF — G, a®x— ar K-linear

Assume that F, F, G are equipped with K-linear
endomorphisms d with d : E — E homogeneous
of degree 1 such that

(L) d(ax) =d(a)x + q%ad(zx); Vo € E* Vxr € F
Then one has by induction on n

n
dn(al‘) — Z qam[ n ] dn—m(a)dm(w)
m=0 q

m

In particular, if ¢ € K satisfies (A1)

[ﬁ] = 0 for 1 <m < N and one has
q

dV(az) = dV (@)z + ad (x)

thus if (E,d) is a chain N-complex, (F,d) is a
N-differential module and G = E ® F' then the
right-hand side of (L) defines a N-differential
on G.

29



Examples

1. K=Zp and g=1
(Ap) satisfied
(A1) & N is a prime number.

2. K=Cand ¢V =1

(Ap) & q# 1
(A1) & ¢ is a primitive Nt root of 1.

(En)neN Presimplicial with faces
fifj = fj—1f if e <y

If K and g € K satisfy (Ap)
do = Y P_ 0"k - En — Ep_1

satisfies d) =0 on E = ®nEn
= N-complex (E,dp)

1. — Mayer
2. — Kapranov
More general ansatz and computation — see
later
30



Matrices

K and ¢ € K satisfy (A1)

Ej basis of My (K); (Ef): = 656
EfE} = 6%Ej and Y\, B =1

= My (K) is Zy-graded by setting

deg(Ef) =k—¢ mod (N)
e=MET+ - -+Av_1Ey_; +ANEY € My(K)*
d(A) = eA — q%Ae, A€ Mpy(K)?

dV = 0= (My(K),d) is a Zy-complex, in fact
a Zpn-9raded g-differential algebra.

eV = X1... N1,
eN=1d(A) — gd(eN71A) = (1 —g)X1... AyA

If 3(1—¢) "1, A7t € K, then H,y(My(K),d) =0
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V - TENSOR PRODUCT AND
q-DIFFERENTIAL ALGEBRAS

Ref : [22], [20], [25], [21].

Ref : [560], [9].
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Monoidal categories

C monoidal if

1) ® : CxC — C cov. funct. with natural isom.
aapc A®(B®C)— (A® B)®C such that
(aa,Bc®Idp)oaspgepo(lda®apcp) =

AARB,C,D © @A B,CRD -
AR(BR®(C®D)) - (AR B)RC)®D

2) 1 € Ob(C) unit object with natural isom.
bp 10A— A, rg: AR 1— A such that
ldy®rp=ragpoaspq: AR(B®1) — AR B
Idy®fp = (TA(X)IdB)OaA,]l,B . ARQ(1®B) — ARB
lagp = (4 ®Idp)oaq 4 5 1I®(A®B) — AR®B
C is monoidal strict if7 a’,e,r are identities.

Every monoidal category is equivalent to a strict
one
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Monoids

C monoidal

A € Ob(C) is a C-monoid if 3 morphisms
uw:AR®A—Aandn:1— A such that
po(ldg®@u) = po(p®ld 4)oag 4 4, (associativity)
po(ldg®mn) =r4 and po(n®Idy) = L4

1 ="“multiplication”, n ="“unit” (of A)

K-Mod, ®k, 1=K monoidal
A monoid in K-Mod < A associative K-algebra

More generally if C is monoidal and if its objects
are K-modules, a monoid in C will be called and
associative algebra of C
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Examples

1) C = cochain complexes of K-modules
(B® F)" = @4 s—pnE" ® F?
d(e® f) =d(e) ® f + (—1)99(e ® d(f)

A C-monoid = A graded differential algebra

2) C= cochain N-complexes of K-modules
K and ¢ € K satisfy (A1)

(E ) F)n — EB’I“—FS:’N,ET ® F°
{ d(e® f) = d(e) ® f + q9°9e @ d(f)

A C-monoid = A graded qg-differential algebra

3) Under (A7) for K and ¢q € K the above for-
mulae induce a monoidal structure for the cat-
egory of Zpj-complexes of K-modules.

= Zp-9draded g-differential algebras
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Another approach: The Hopf algebra Dy

K and g € K satisfy (A1)

Dy = associative unital K-algebra generated by
d and [ with relations

dV =0, TN =1, rd=qdlr

Dq is a Hopf algebra with

A(d)=d14+T ®d, A=
e(d) = 0, e(M =1
S(d) = —N-1q, S(r)y=ri-1

E = ®pez L Zn-complex

d — d = N-differential of F
[ — multiplication by ¢P on EP, Vp € Zy

= FE is a Dgi-module and the (g) tensor product
of Zjpj-complexes is induced by the coproduct
of Dyq

Case of N-complexes (i.e. Z-graduation)
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Hochschild cochains I

A unital associative K-algebra, (A1) for ¢ e K
M, M (A, A)-bimodules
w € CM(A,M) = diw € C" (A, M)

di(w)(xg,...,xn) = zogw(x1,...,Tn)
+ ZZ:]_ qkw(be vy Lp—1Lky - - - 733?1)
—q"w(xg,...,Tn—1)Tn

djlv =0, di(wUw) =di(w)Uw + q"wUdy(w)
for w e C"(A, M), W' € C(A, M)

= (C(A, A),dq1) is a graded g-differential alge-
bra

C(A) = &n(®™A)* is a graded algebra
U;(W)(l‘oa st 7$n) —
— ZZ:]_ qk_lw($07 ey Lp—1Lky - - - 7xn)

(C(A), uy) is a graded g-differential algebra
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The graded algebra T(A)

T(A) = TH(A® A) = Bp(®"TLA)

Generated by A in degree O and by the free
generator = 1® 1 in degree 1
0 Qxp =x97x1...7TIn € TV(A)

PROPOSITION 1 (Universal property) Let
U = @,>0" be a graded K-algebra. For any
unital K-algebra homomorphism ¢ : A — A0
and for any o € A, 31 graded algebra homo-
morphism %, o @ T(A) — A which extends ¢
and sends T on «.

Take A =C(A, A),p =1d 4 and
acldy e Cl(A A) =W =%,, given by
V(zg® - ®@xn)(W1,---,Yn) = TOY1T1 - - - YnTn
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g-differential structure on T(A)

A unital assoc. alg. as above, (A7) for g € K

PROPOSITION 2 3! d; : $(A) — T(A) lin-
ear homogeneous of degree 1 satisfying the
graded q-Leibniz rule

d1(af) = d1(a)B + ¢/%lady (B)

such that

di(z) =1z —2Q@1=70x — 27, Ve € A

and

di(r) =72 (ie. d1(1@1) =11 1).

Then one has dyy =

In fact, by induction on n, one has
d?(z) = [n]q!7" 1dy(z) and d}(r) = [n]glr" Tl

(T(A),dq) is a graded g-differential algebra and
one verifies that
v T(A) — C(AA)
IS @ homomorphism for this structure i.e.
WVody =dyoWV
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Universal g-differential envelope

A,K and ¢ € K satisfy (A7) as above.

Let Q2,(A) be the graded g-differential subal-
gebra of (%(A),d1) generated by A = T9(A)
and let d denote the N-differential of €24(A)
(induced by d1).

THEOREM 1 (Universal property) Any ho-
momorphism ¢ : A — A9 of unital associative
K-algebras of A into the subalgebra of degree
O elements of a graded qg-differential algebra 2
extends uniquely as a homomorphism

Qq(p) : Qq(A) — A

of graded q-differential algebras.

This universal property characterizes 2,(.A)
uniquely up to an isomorphism

Qqu(Id y4) : 24¢(A) — T(A) is the inclusion
Qq(Id y) 1 2¢(A) — C(A, A) is induced by W.

A direct construction of €24(A) is possible.
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Homological properties of 24(.A)

PROPOSITION 3 Assume there is a linear
form w on A such that w(1) = 1. Then

(k)(T(A) dy) = H(k)(Qq(A)) =0 forn >1
and H?k)(z(A), dy) = (k)(Qq(A)) = K for any
ke{l,...,N — 1},

Define the cochain N-complex (E,d) by

E = Ke—(N—l) D---PKe_1 ®%(A) with d = d;
on T(A) and de_1 =1, de_; = e_(;_q) for
2<i< N-—1.

Define h : E — FE linear of degree -1 by
h(zg® - Qxp) =w(zg)r1® - Qan, n>1
h(zo) = —¢ tw(zp)e_1 and
he—;)) = —q TV i+1]4e_(j11y, 1<i< N-2
h(e(-n-1)) =0
Then hd — gdh = I which implies the result
since Ke_(y_1)® -+ ® Ke_1 @ 24(A) is stable
by d and h.
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VI - N-COMPLEXES OF IRREDUCIBLE
TENSOR FIELDS

Ref : [22], [23], [24].

Ref : [5].
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Notations

(z*) = (21, ..., 2P) coord. in RP

Oy = 0/0x* partial deriv.
(ident. flat torsion free connection of RY)

T = cov. tens. field of degree = p

= Ty (2)

0T = cov. tens. field of degree = p+ 1

T = Oy Tq iy ()

T — 0T is a first order differential operator,
homogeneous of degree 1.
({cov. tens. fields} = graded vector space)
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Differential forms

Q(RP) = p?N QP(RP)

QP(RP) = {antisym. cov. tens. fields of degree p}
d= (—-1)PA,1100: QPRP) — QFFH(RP)

= Im(d) C Ker(d)

Ker(d) o HP(Q(RD))

H(Q(RP)) = i = ¢

HP = {w € QP|dw = 0}/dP~1
HY(Q(RP)) = {constant functions} = C1
LEMMA 1 (Poincaré lemma)

HP(QRP)) =0, vp>1
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Generalization

w € QP(RP), w : specific case of fields of irre-
ducible tensors of degree = p

+«—— Young diagram with 1 column

p—Yp, (Y)=(Yp)pen
Qyy(RP) = D Q](jy)(RD)
Q%Y)(RD) = {cov. tens. fields in Im(Y,)}
d=(-1)PYpq100: Q) (RP) — Qfg;;)l (RD)
LEMMA 2 N e N with N > 2; (Y) such that

# columns (Yp) < N (ie< N—-1) VpeN
= dV = 0.

H 1y (Q(yy(RP)) = Ker(d") /Im(a" %)

ke{l,...,N—1} (graded spaces)
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Qn(RP)

(Y) is chosen as satisfying the conditions of
the lemma in a “maximal way” , i.e. one fills
the lines of N—1 cells, etc. = (YV) = (Y)¥) pen

= QN (RY) = @ QR (RY) = 2y ny (RY)
with @" =0

THEOREM 1 (Generalized Poincaré lemma)

HZSV—”(QN(RD)) —0, Vn>1, Vk

One has H?k) — polynomials of degrees < k

Remark : The H"(”k()N_l)+p(QN(RD)) are infi-
nite dim. forn>1and 1 <p< N —-1. (The

H%’k) are finite dim. for 0<p< N —1).

46



Higher spin gauge fields

Spin =1« (em.) - N=2

QORDY 4 QLRDP) 4 Q2RD) 4
T T T
gauges Ay Flu

Spin=2 « (grav.) — N =3

d d? d
QI(RP) = QZRP) S Qi(RP) S

T T T

gauges h,uy R)\p,,uu
Spin S>1+— N=5+1

S-1 d ~g d° ~2¢ d ~25+1
QS—I—l - Q54-1 - QS+1 - Qs+1

Q3(RP)
T

~ Bianchi

Q3 (RP)
T

~ Bianchi

Other applications e.g. S =2

d(h) =0+« h =d?¢ i.e. hu = 8,0,¢
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Duality

Contracting columns by eH1--KD

covariant ®

%
D

- /
\
X (
N
contravariant ( D ) * (0 )

\_“_/m\/

= Other applications. Example :
OouyTH =0, T =T"H («—|p|v|)
THY — guul---MD—15W1---VD—1wM1MND_l
OuTH =0 & dw =0 in Q3(RP)

V...vp_1

sw=d%p ©TW =200, RM"

f 1
(gen. Poincaré ) ( AP
W | v
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Calculus on manifolds 7

RL +— V manifold, dim(V) = D
Q(Y)(V), QN(V) well defined,
but not T +— OT'.

One must choose a linear connection V

— Qrtl

:>dv ( 1)pY _|_1oV Q(Y) (Y)

butd = 0

because of torsion and curvature of V
(= result at the level of symbol).

LEMMA 3 (Y),N as before.
dY is of order N — 1

and if V is torsion free

dY is of order N — 2.
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Computations for N = 3

HP)y ~R, Hlpy ~RGRPY
H(ll) ~ (X0, Xy + 0, X, = 0} ~ RP @ A°RP

H(12) ~ {X|0\(0u Xy — OuX,) = 0}/{dp} ~ A°RP

w = 2-form — t = Y3 0 0w € Q3(RP)
= dt =2 0 in Q3(RD)

t =dh i.e. b = (9yh’u>\ — Ouhy) &
(*) Wury — aul/px’o + a,qu — aI/X,u, a € N3RD

and then t = d2X in Q3(RD)
— H?l) and Hé) contain the oco-dim. space
{2-forms} / {2-forms(x)}.

Similar construction = dim(H(Ql?)"'l) = 00.

Basic lemma —|—H(2]?) —0= H(Qf)+1 ~ H?%"’1
(n>1)
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Computations for N > 3

The construction for N = 3 generalizes for
N >3
= dim (H@b) =—occform>Nandm = (N—-1)p

For k+m < N—1, H~

{S| Z 8/%(1) T 8:uw(k:)‘Sﬁ“w(k:—l—l) T lu7r(k—|—m) — O}
W€6k+m

= dimH?}g) < oo (polyn. degrees < k+ m)

Basic lemma —I—H((g_l)p =0 forp>1

= 4-terms exact sequences

k AN—k—/¢ l 1k
0% Hipy' S Hiv it Hiy ok el
[ L ke—1 [dV R
— H(N—E) — 0

for 1<k ¥l, Kk4+¢<N-1
= dimHZ‘C) (< o0) for m < N — 1 as functions

of the HE’Z) fork+m<N-1 (k>1)
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Young diagrams

Y = partition of |Y| € N « rows of lenghts m;
m; > - >my >0, Yom;=1Y]

(Drawing — ) columns of lengths m;
myp > >me >0, Y m; = Y]

mi1=<c¢, M1=r

Y = dual partition or diagram (see the draw-
ing)

Y’ C Y inclusion clear
Y/ CC Y strong inclusion means

mq Zm’l and ﬁchﬁzll

= contraction C(Y|Y') for Y/ CcC Y (see draw-
ing)
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Schur modules

E vect. sp., dim(F) = D < oo, E*= dual

¢ : EIYl — F multilinear

(i) ¢ antisym. in entries of each column

(4) antisym. in entries of a column with an-
other entry of Y on the right-hand vanishes
Morphism ¢ — ¢’ = f € Hom(F, F") such that
¢ =foo

Initial object = Schur module

(.)Y ) E|Y| ~ EBY

Construction EY c E®Y| ~ mult. forms on
(E*)IY

T : (E)IY] — R satisfying (i) and (ii)

T arbitrary — Y(T) € EY

V(T) = Yper gec(—1)F DT opogq

C' permutes entries of each column
R permutes entries of each row

V2 =Ct®y . Y2 =Y, Young symmetrizer
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Schur modules II

E®" = E¥" @g, K(G&p)

" (GL(E)) ~ {Im(&,) in E®"}

Y| =n,EY = E®" ®g, Repy (&) € Irrep(GL(E))
multiplicity = dim(Repy (&5))

= {multiplicity of Repy (&) in K(&y)}

Remark for latter purpose :

T(E)/[Ea [Ea E]®]®

each Y occurs with multiplicity one

= model for polynomial representations of GL(E).
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Contractions in EY

T € EY and T' € E*Y’

with Y/ cCc Y — ¢(T|T") € ECYIY")

given by tensor contraction of indices corre-
sponding to the drawing of C(Y|Y")

The fact that C(T|T") belong to ECYIY") is not
completely obvious.
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Multiforms

A = (®gr_1 A RD*) ® C®(RP)={multiforms}
C>®(RP)-algebra generated by

dix*;, 1e{l,.... N—-1}, pe{l,...,D}

with relations

dix“dja:’/ —|— djm’/dix” =0

or R-algebra generated by d;x* as above and
C>®(RP) with relations

fdizHt — digh f = 0, f e C°(RP)

Q[ — @miENQLml,...,mN_l

IS multigraded, so also graded

A — @nmn’ AN — @zmi:n%ml,...,m]\;_l

and in fact graded-commutative.

There are N — 1 antiderivations of graded R-
algebra d; such that

dzf — dia?'uauf (f S COO(RD)), didjx“ =0

= didj + djdi =0

= d; = > ;crd; is a differential, i.e. an an-
tiderivation of degree 1 with d4 =0
VIC{1l,...,N — 1} with #I > 1.
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Generalized Poincaré lemma for 2

For N = 2, one has U = Q(RP) = O,(RP)

THEOREM 2 Let K be a non empty subset
of {1,...,N—1} and m be an integer m < #K.
T hen

(Hdi)wZO, VI C K with #(1 = m

el
implies
w = Z ( H dj> oy + wo
JCK jeJ
#J=#K—m+1

with wg polynomial of degree < m — 1

For N = 2 this is the Poincaré lemma and wg
can be incorporated in the differential.

This theorem which is interesting in itself is
the main step for the proof of the generalized
Poincaré lemma for Qxn(RD).
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Canonical inclusion Qn(RP) c 2

EY CNME®.-- - @ ANTE

In particular

EY(JXI—l)n-I-i c (@ A"l E) @ (N1 An )
decomposing the right-hand side into irreducible
GL(FE) factors there is only one factor isomor-
phic to the left-hand side = Image of GL(FE)-
invariant projection

Q](VN—l)n-l—i(RD) — (RD*)Y(JJVV—l)n-I—i R COO(RD)

= Qn(RP) =Im(x)

with 7 a C®(RP)-linear GL p-invariant homo-
geneous projection of 2 onto itself.

LEMMA 4 Let w e QK (RP)
withp=(N—-—1)n+i (0<i< N-—1). One has

dw = cpm(dij41w)
where cp € R\{0}.
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Theorem 2 = Theorem 1

LEMMA 5 Let w € Q](VN_l)”(RD). One has
d"'w=0&d;...djw=0
forl1<k<N-1, {i1,...,i .y C{1,...,N —1}.

In view of the symmetry in the columns,

diy ...djw =0 d1...dgw = 0. On the other
hand dj ...dww € Qn(RY) because one has no
component with first column of length > n-41.

LEMMA 6 Let w € QY ®RD) with n > 1.
Assume either that w is polynomial of degree
< k—1 or that one has

w= > (Il dp)a,s

J jeJ
#J=N—k

Thenw = dN—*a for some a € Qg\,N_l)”_Nij(RD).
With these lemmas one deduces easily Theo-

rem from Theorem 2.
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Appendix

Y= Young diagram with mq1 > --- > me¢
Y'=Young diagram with m} > --- > m/,
Set Y > Y’ whenever m;, > m;, and my = m),
for Kk < p for some p > 1, with the convention

mp = 0 for n > c (m], =0 for n > ).

PROPOSITION 1 The relation' Y > Y/ de-
fines a total order on the set of Young dia-
grams. For (YY) one has

Y, = Inf{Y|le< N and |Y|=p}

where c = # columns (Y ) is the biggest integer

with e 7= 0 ; one has of course Yp]YH > YV,
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VII - SIMPLICIAL N-COMPLEXES

Ref : [22], [20], [19], [21].

Ref : [51], [52], [40], [43], [61].
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Presimplicial

Presimplicial module : (En),eN

fi: BEn— E,_1 for i € {0,1,...,n} (faces) such
that

Jifj = Tj—1F; for ¢ > j

(~ relations of faces of simplices)
d=3>(-1): En — Ej_1

(E = ®nFEn,d) complex = H(E) = ®&n,Hp(E)

Precosimplicial module : (E™),cN

fo: E™ — E"T1 for i € {0,...,n 4+ 1} (cofaces)
fI§t = §49—1 for ¢ < j (duals)

d=>(-1)%: E" — gntl

= cochain complex = cohomology

Homg(e,K) : Presimpl. — Precosimpl.
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Simplicial

Simplicial module = Presimplicial module
(En)nen, fi and degeneracies

s;: En — E,4q forie{0,...,n}

with

$i%; = 6418 for 1 <y
5j—1fz' for 1 <y

fis; = ¢ Identity for i =j and i =j+ 1
5j](z'—1 for:>75+1

Dually for cosimplicial module :
st:E"— E" 1 j¢{0,...,n—1}
slst = st TL for i<

N fisi =1 for i < j
s/f = { Identity for i =j and i = j+ 1
fi=lgl for ¢ > j 4+ 1
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Associated N-complexes

(E™),eNy = Precosimplicial module
K and ¢ € K satisfy (Ag), i.e. [N]4 =0

do
dq

ZkZO qkfk nfn—I—l

dm =
Zn m—+1 kfk g m—+1 (Zzlz—ol(_l)pfn—m+2—|—p)

fornzm—l
dm =d forn<m-—1

LEMMA 1 One has d =0, Ym €N

Cumbersome induction (easy for the parts 6, =
> e m1 . n>m—1).

Notice that dy =d : E° — EL.
Similar N-differentials in the simplicial case.
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Expressing H(k)(dm) in terms of H(d)

Hjy(dm) = Hy(E,dm), H(d) = H(E,d)

K and g € K satisfy (A7), E cosimplicial

THEOREM 1

(0)

(1)

N\

N\

[ H() (do) = HT ()

N(r4+1)—k—1

H gy

(do) = H?"(d)

H?k)(do) = 0 otherwise

[ H{J}(d1) = H?"(d)

HS D (dy) = B2 (d)

H?k)(dﬂ = 0 otherwise
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More generally under the same assumption
THEOREM 2 Setting Em = ®p>m—1 8"

Hé\é?)“"‘m—l(Em, dm) — H2?“-|—m—1(d)

forr > 1,

Hé\lfggr+1)_k+m—1(Em’ dm) = H27“—|-m(d)

H{;)—l(Em, dm) = Ker(d : E™—1 — Em)

and H(‘k)(Em, dm) = 0 otherwise.

In particular for n > N — k+ m — 1 one has
H?k)(dm) =0ifnEm—1 mod (IN) or
n+k#=m-—1 mod (N) and

HOS T Hdm) = H2rPm=1(d) vr > 1,

Hé\lf{:gr-l-l)—k—l-m—l(dm) _ HQT—I—m(d)_
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Simplicial case

In the case where FE is simplicial one defines
similarily the sequence of N-differentials d,, in
terms of faces and, under (A1) one has

THEOREM 3
[ H(jy nr—1(do) = Hor—1(d)

(0) ¢ Hp) Nr4k—1(do) = Hop(d)

| H(x) n(do) = 0 otherwise

[ H(jy nr(d1) = H2p(d)

(1) ¢ Huy Nr41(d1) = Hopp1(d)

\ H(k),n(dl) = 0 otherwise
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Products

IM-precosimplicial module = precosimplicial mod-
ule (E™,§) with K-linear associative product
E*® EY - Fotb o ® 3+— afB such that

i _ [ () if i<a

Flab) = { afi=e(8) if i>a
for i € {0,...,a+b+1} and {2 T1(a)38 = of°(B)
for « € E®, 3 € EY.

PROPOSITION 1 Let (E™) be M- precosim-
plicial with K and q € K satisfying (Ag). Then
(E = ®nE™ dq) is a graded q-differential alge-
bra.

In particular for N =2 (¢ = —1) it is a graded
differential algebra.
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Examples

(C™(A, A)) with usual product (®4)

fo(w)(x07 <o 73371) — wa(xla s 73371)
fi(w)(w(b ce 733’”/) — CLJ(CIZ'O, cee s Ly _1Lg, - - 7wn)v
1<1<n

i (w) (2o, ... 2n) = w(xo, ..., Tn_1)Zn

(T (A)) with its product
Plrg® - Qan) =102 ® -+ @ xp

fleo® - ®an) =
ToR - Rx;_1RQ1Qx; @ Qxp,, 1 <1< n

fn+1(330®“‘®513n):330®"'®33n®]|

One has Woft =foW:T"(A) — C"(A, A)
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IM-cosimplicial

A M-precosimplicial module (E™) is 9M-cosimplicial
if it is a cosimplicial with codegeneracies sat-
isfying

as'%(B) if i>a

fori€{0,...,a+b—1}, a € E* 3¢ EY.

57;(055) _ { ﬁi(q)ﬁ if 1<a

(C™(A, A)) is M-cosimplicial with

s (W) (@1, 1) = (@1, @ LT, T 1)
(T*(A)) is M-cosimplicial with

ﬁi($0®"'®xn):$O®"'®xi$i—|—l®"'®xn

PROPOSITION 2 WV js a dM-cosimplicial ho-
momorphism.

i.,e. one also has Wos! =sto W
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Normalization

- (E™), §*,sJ cosimplicial module

— (E, d) corresponding complex N(E™) = NKer(s?)
stable by d

— (N(F),d) and H(N(F)) = H(E)

- In the case (E™) 2M-cosimplicial one has :

PROPOSITION 3 Let (E™) be aM-cosimplicial
module. Then (E,d) is a graded differential
algebra and (N(FE),d) is a graded differential
subalgebra of (E,d).

The first part is a particular case of Proposition
1 (¢g=-1,N =2).

Notice that N(T(A)) = Q(A) is the universal
differential envelope of A and that W is a ho-
momorphism of Q2(A) into (NC(A,A),d)
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VIII - A N-DIFFERENTIAL B.R.S. PROBLEM

Ref : [22], [27], [28].
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A N-differential BRS-like problem

For the zero modes of the SU(2) WZNW model,
N= height of the current algebra representa-
tion = k£ 4+ 2 with k= Kac-Moody level.

- (H, A) = N-differential space (AN = 0)

- Uy acts on H (¢ = —1), Uy, A] =0

- H;y = {U4-invariant € H} = (H;, A) = N-diff.
- Hphys ~ Opei H(oy (Hr, A)

Problem : Avoid the restriction to Hy i.e. find
a N-differential space such that Ug-invariance
is captured in the N-differential, etc.
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N-complex of linear inclusion

FE1 C FE vector spaces = (FEp, 6g)N-complex

Eo=@)_gE}, EQ=Eand E} =E/E; n>1

n=0
5o : Ef — Edtl 6o =7:Ed=E — E/E; = E}
So=1d: El = E/E; — E/E; = EATH
for l<n<N-1andd=0on EJ 1

PROPOSITION 1 One has H?k)(Eo, d9g) =0

forn>1 and H?k)(EO,dg) = Fq
for any ke {1,...,N —1}.

(Ep, dp) is characterized by the following .

PROPOSITION 2 Any linear o« : E — CO
where (C = &,,NC", d) is a cochain N-complex
such that doa(FE1) = 0 has a unique extension
as a homomorphism «a : (Eg,d9) — (C,d) of
N-complexes.
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Inclusion of N-differential spaces

(FE,61) N-differential E1 C E with §1F1 C E
q = primitive Nth root of unit.

PROPOSITION 3 §; : E§ = E — E = Ej
has a unique linear extension, denoted again
by 61 : Eqg — FEg, which is homogeneous degree
0 and satisfies 5159 = qdgd1. One has &) =0
and (60 + 61)Y = 0 on Ej.

Use Proposition 2. Take a =61 : E — EJ = &
and set §; = gdegrees,

THEOREM 1 H;y(E1,61) = Hy,y(Eo, 5o+61)
forke{l,...,N —1}

One has the short exact sequence
0 — (B1,81) = (Eo, 60+ 61) — (F,8) — 0
and H(k)(F,5) =0 for k &€ {O,l,...,N— 1} =

0% Hpy(E1,61) = Hpy(Eo, 60 + 1) — 0
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Hopf algebra action

Assume now that a Hopf algebra U acts on
(E,61) by automorphism and that E; is the
set of U-invariant elements of E.

LEMMA 1 Forz € E = CO%(U, E) the follow-
ing statements (i), (i1) and (ii1) are equivalent
(i) d¥(z) =0 for some k€ {1,...,N —1}

(1) x € Eq

(i4t) di(x) =0 foranyne{l,...,N —1}

On CO(U, E) one has d; = d and by induction
d(z)(1,...,1,X) = [n]¢X(z) = Lemma 1.

PROPOSITION 4 (Ep,dq) identifies with the
N-subcomplex of (C(U, FE),d1) generated by E.

ie. Eo=E®diE®---®dY 'E, di | Eg = d&g.
The homomorphism (Ep,d9) — (C(U,E),dq1)

of Proposition 2 is injective by Lemma 1.
76



H;y(E1,61) in terms of C(U, E)

LEMMA 2 One extends 1 from Eqg toC(U, E)
by (510})()(1, < 7Xn) — qn61W(X1, <o 7Xn)7

we C"(U,FE) and one has §1d1 = qd101,

6)) = (d1 +61)V = 0.

Let the filtration F™ of H(C(U, E),d1 + 61)
be defined by F"H(C(U, E),dy + 1) =
[Ker(d1 +01)*N®o<r<nC" (U, E)] for n > 0 and
by O for n < O.

THEOREM 2 The inclusion Eqg C C(U, FE) in-
duces isomorphisms

H;y(Eg, 80 + 61) ~ FOH;,(C(U, E), dy + 61)
for ke {1,...,N — 1}.

In particular, one has for 1 < k< N —1
FOH i (C(U, E),dy + 61) ~ Hy(E1,61)
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IX - HOMOGENEOUS ALGEBRAS

Ref : [8], [26].

Ref : [6], [7], [53], [47], [48], [49].
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Homogeneous Algebras

K field of characteristic zero
N € N with N > 2

A N-homogeneous algebra
A= A(E,R) = T(E)/(R)
dim(E) < oo, R C E®

= A connected graded algebra (Ag = K1)
generated in degree 1 (A; = F).

f:A(E,R) — A(E'",R) morphif[m :
f € Homg(E, E") such that f® (R) C R’
= f induces an algebra homomorphism.

Category HnAlg
Forgetful functor A +— E from HynAlg to Vect
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Duality

A= A(FE,R) N-homogeneous algebra
— A' = A(E*, R1) dual N-homogeneous alge-
bra

where

RE = {w e (E® )*|w(z) = 0, Vz € R}
with the identification (E®")* = g*®"

(A=A
f: A— A" morphism
— £ (A = A morphism

(A— A f— Y involutive contravariant func-
tor
A— A is a lifting to HyAlg of the duality
E — E* in Vect
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Products

A= A(E,R), A = A(E', R

Ao A = A(E® E',nn(R® E®" + E®" @ R))
Ao A =A(EQ E',nny(R® R))

oy . (1,2,....,2N)— (1, N+1,...,N,2N)
acting on the factors of .

(Ro E®" + E®" o RYL = RL o R =
(.AO.A/)!:.A!..A,!
(.AO.A/)!:.A!OA,!

RoR c Ro E® + E®" 9 R =

p:Ae A — Ao A
epimorphism of HyAlg (p = Iggpr)-

o et e are lifting
to HnAlg of ® in Vect.
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Connections with A ® A’

If N >3, A A" is not N-homogeneous.

- T(EQE) - T(E)T(E"
1 (E® EN®" — E®" g B/®"

7
7

7 1S an injective algebra-homomorphism
WT(E®E)) = @,E®" @ E'®"

PROPOSITION 1 A= A(E,R), A = A(E'",R)

7 induces an injective algebra-homomorphism
iAo A > AR A

and

i(Ao A) = ©pAn @ A,
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Units

A: A(E,R), ./4, — A(E,,R/), A// — A(E”,R//)

(EQEY®E'~E® (E' @ E"

induces (Ao Ao A" ~ Ao (A o A")
E®QFE ~FE @F induces Ao A"~ A" o A
K = K¢ unit object of (Vect,®)

— K[t] = A(K¢,0) ~ T(K) unit

object of (HnAlg, o).

THEOREM 1 (») HyAlg endowed with o is
a tensor category with unit object K[t]

(nn) HnAlg endowed with e is a tensor category
unit object An{d} = K[t]

(2) < (22) by duality
An{d} = unital graded algebra generated in
degree one by d with relation dV = 0.
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Hom(A, B)

THEOREM 2

Homg(E ® E',E") = Homg(E,E™ @ E")

in Vect induces

HOITI(.AOA/,A”) — HOITI(.A,.A/! O.A”)

= internal Hom for (HyAlg,e)
Hom(A’,A”) — .A’! o A"

The canonical mappings (E*® EF') @ E — E'
and (E* @ ") @ (E*® E') — E*® E” induce
products ¢ : Hom(A, A') e A — A’

m : Hom(A’, A”) e Hom(A, A") — Hom(A, A")
with obvious associativity properties.
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end(A)

Setting hom(A, B) = Hom(A', B)! = A' e B by
duality from u, m one obtains

dg: B—hom(A,B)o A
Ag:hom(A,C) — hom(B,C) ohom(A, B)
with induce via 1
. B—hom(A4A,B)x.A
A :hom(A,C) — hom(B,C) ® hom(A, B)

with obvious coassociativity properties.

THEOREM 3
end(A) = A'e A

endowed with A is a bialgebra with counit ¢
A' e A — K induced by the duality
e={(,): E*®FE— K and A endowed with ¢ is
an end(A)-comodule.
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N-complex L(f)

Theorem 1 (12) + Theorem 2 =
Hom(B,C) = Hom(Ax{d}, B' 0 C)

£r € B'oC image of d corresponding to f €
Hom(B,C). One has (£)Y = 0.

d= Left multiplication by i(§f) in
Bec dV=0=>

L(f) = (B'®C,d) is a cochain N-complex
of right C-modules :

When A =B =C, f = I, one denotes it by
L(A)
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N-complex K(f) -1

Apply Home(.,C) to each right C-module of
L(f) =B ®C,d) =
The chain N-complex K(f) of left C-modules.

Home (B! ® C,C) ~C ® (B)*

= K(f) = (C® B, d),
d:C® (B, )" —C(B)*

When A =B =_, fIIA
one denotes it by K(A)

We shall describe an alternative construction
for K(f).
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Disgression

LEMMA 1 A associative algebra with prod-
uct m, C' coassociative coalgebra with coprod-
uct A, Homg(C,A) endowed with the convo-
lution product

axB=mo(a®p)oA,(a,B € Homg(C, A))
For a € Homg(C, A) define
do € ENdy(A® C) = Homy(AR C, AR C)

as the composite

I JAN I I I
ARC A28 AoCceC A2 A amc "2 AxC

Then oo — do IS an algebra homomorphism i.e.

1 unity of A, € counit of C
= a +— e(a)l unit of Homyg(C, A)

structure of left A module

r(a®c) =xza®c
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N-complex K(f) - 11

B=A(E,R),C=A(F',R)
(B')* coalgebra with (B})* =By = E

feHom(B,C) — a € HomK((B!)*,C)

a=f:E — E'in degree 1 and o« = 0 otherwise
N = ax... % is the composite

~~

2

= o* =0 (f(R)CR) =
(C @ B'*,d,) is a chain N-complex of left C-
modules which coincides with K(f) (d = da).
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Components

Bl =E®" ifn< N
B,=E%"/ Y EYQRRFE®ifn>N

r+s=n—N
=

(B)Y*=E®" ifn< N
(Bh)* = Npis—nnNE® @ RRE® ifn>N
Thus in any case one has

(B)* c E¥"
The N-differential d of K(f) is induced by
c®(e1®er®---Qep) —cf(e1) ®(e2®@---®ep)
of C® E®" into C @ E®" "
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Splitting of K(f)

K(f) splits into sub-N-complexes.
K(f)" = ®mCn—m ® (Bh)* n €N
homogeous for the total degree.
K(f)%is0—-K—0

K(f)" is
n " n— [®n_1® n
O—>E® f®i> £ E® 1_) E’_)f IQ 0

forl<n<N-—1and K(f)& is

0-R—-E®E® ' .

s BT @ B gt R, 0

These K(f)™ for 1 <n < N —2 are acyclic only
if E =FE =0.

LEMMA 2 K()N-1 and K(f)Y are acyclic if
and only if f is an isomorphism (of HyAlg).
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Maximal acyclicity

The maximal acyclicity for K(f) that can be
a priori expected is the acyclicity of the N-
complexes K(f)" forn> N — 1.

Lemme 2 = One can restrict attention to K(A)

PROPOSITION 2 N >3
K(A)"™ acyclicYn > N—-1< R=0 or R = E®"

Thus the assumption of Proposition 2 leads for
N > 3 to a trivial class of algebras

although for N = 2 this assumption character-
izes the quadratic Koszul algebra. Generaliza-
tion? i.e. nontrivial maximal acyclicity?
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Koszul Homogeneous Algebras

Cpr, OZ<r<N-2 r4+1<p<N-1
complexes obtained by contraction of K(A)

N—p P N—p
ST AR A, B AR AN 1,

N—
-d—p>.A®Akkf—p—|-T d_>p'A®-Af}"* — 0

PROPOSITION 3 N >3, (p,r) # (N —1,0)
®N

A Koszul N-homogeneous algebra

Hn(CN—l,O) — O, vn > 1.

= resolution of the trivial A-module K.
Cn_1,0 Will be denoted by K(A,K), it coincides
with the Koszul complex introduced by Roland

Berger.
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Complex K(A, A)

K(A) N-complex of left A-modules

-iA®A7!;<+1£>A®A7!{ki---
d induced by
a®(e1® - Qepyri)rae1 @(e2® - ®epq)
K(A) N-complex of right A-modules
L Al argal
d induced by
(e1® - Repgp1)®ar (e1® - Ren) Veyyra

= two N-complexes of bimodules (L, R)

dr,d dr,d dr,d
BT AR AT AR AT @ AT

dr, = d® 14, dR:[A(X)J
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Complex K(A, A)|, continuation

N—-1
N—p—1
deR = deL = (dL — dR) ( Z dIl?)dR p ) =
p=0

N-1
N—-p—-1
(Z i dp P )(dL—dR)zdg—d%:o
p=0

Define the chain complex of (A, A)-bimodules
(A, A) by

Kom(A,A) =AQ AN & A= Kom(AK)® A
Komt1(A,A) = ABAR,, 1 10A = Koppp1 (A K)QA
with differential §’ defined by

§' =dp —dp: Kopmy1(A,A) — Ko (A, A)
N—-1

5 = Zo dhdp P K1y (A A) — Ko (A, A)
p:
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Properties of Koszul algebras

PROPOSITION 4 A= A(E,R) N-homogeneous
H,(K(A, A)) =0 forn>1<« A is Koszul.

- A Koszul & K(A,K) — K — 0 is a (free)
resolution of the trivial left A-module K

- A Koszul & K(A,A) — A — 0 is a (free)
resolution of the (A, A)-bimodule A.

Pa(t) =) dim(Ap)t"

Q) =Y (dim(Ay )tV —dim(Ay, DtV
p

A Koszul = Q 4(t)Py(t) = 1.
which generalizes a well-known result for quadratic
algebras since in the latter case (N = 2) Q 4(t) =

P.A!(_t)'
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Small complexes S(A, M)

- A= A(F,R) N-homogeneous
- M = (A, A)-bimodule
- S(A, M) = M® go4000K(A, A) small complex

- If A is Koszul then the free resolution
KA, A) — A— 0 of A® . A°PP-modules and the
interpretation of the Hochschild homology as

Hn(A, M) = TorA®A™P (g, )

imply that the small complex S(A, M) com-
putes the Hochschild homology i.e.

Hp(A, M) = Hp(S(A, M))
for n € N.
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Dimensions

- A= @, cnAn draded algebra
A has polynomial growth if

dimp(An) < CnP~1, Vn > 1

GK-dim(A)= smallest D as above.

- A N-homogeneous and Koszul

then the above resolutions are minimal projec-
tive =

global dimension of A = smallest D

such that £p(A,K) # 0 and

Kn(A,K) =0 for n > D.

A has finite global dimension if

Al = 0 for n > some integer.

Hochschild dim(.A)= global dim(.A)
Generically GK-dim(A) # global dim(A).

98



Gorenstein Homogeneous Algebras

L(A,K) = dual of K(A,K)
L(A,K) is a cochain complex of right A-modules
(finite, free) and

L(AK) = C1,0(L(A))

A N-homogeneous and Koszul of finite global
dimension D = L"(A,K) =0 for n > D.

Then A is Gorenstein if L(A,K) gives a (mini-
mal projective resolution)

0—L29AK) L ... 4 DA K) =K — 0

of the trivial right A-module K.
This implies

Kn(An K) = ’CD—n(Aa K)
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Homogeneous Algebra

- Algebras of a monoidal category of vector
space V

- Free algebra generated by an object of V (V
stable by colimits)

- Homogeneous algebras of V

- Duality for N-homogeneous algebra of ¥V when
V is strict, i.e. when there is an involutive con-
travariant functor E — E# of V, etc.

- Associated N-complexes
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X - YANG-MILLS ALGEBRA
AND OTHER EXAMPLES

Ref : [13], [26].

Ref : [6], [2].
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Yang-Mills Algebra

Yang-Mills algebra = cubic algebra A gener-
ated by V,, A € {0,...,s} with relations

gV [V, VI =0, v € {0,...,s}
= A=U(g), 9 = > k> 9 9raded Lie algebra

THEOREM 1 A js Koszul of global dim = 3
and is Gorenstein.

A' generated by 6* (dual basis of V)
1
QAQMQV — g(g)\,uel/ + g/u/e)\ . QQAVQ'M)g

where g = g,50°0° € A},
= g central and

AL =K1, A} =a,Ko*, AL =@, Ko1e”

A!g, = @AKGAg, A!4 = KgQ, A,!,L =0forn>5
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K(A,K) for Yang-Mills Algebra

K(A,K) = Cs o identifies with

vt M \V
0— A AT 45Tl A0
d d? d
Vo
where V = : and
Vs

MM = (ghg®P 4 ghog"l — 2ghP g" )T,V 4

and the arrows mean right matrix multiplica-
tion.

Acyclicity in positive degree is straightforward
= Koszul of global dim. = 3.

Gorenstein follows from sym. by transposition.
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Consequences for Yang-Mills Algebra

. 1
- PaA®t) = aoma— e

= exponential growth for s > 2

dim
) mer) i PBW

- Pa(t) =k (135

- As A ® A°PP-module A has a free resolution
K(A, A) — A — 0 which is minimal projective
and reads

5! 5! 5!
0> ARAZIAQKS Tl A 3 AKsTlg A3
AAL A =0

= A has Hochschild dimension = 3

- Gorenstein property implies here
Hn(AaM) — H3_n(A7M)
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Self-duality Algebra

In the case s = 3,9y = oy i.€. 4-dim. eu-
clidean, the Yang-Mills algebra admits nontriv-
ial quotients A(+) and A(—).
AE) (¢ = 1) is generated by V, (0 < X < 3)
with relations

[Vo, Vil = €[V, Vil

V(k,?¢,m) cyclic perm. (1,2,3)
A & A py changing orientation = A(+)

THEOREM 2 A(M) js a Koszul quadratic al-
gebra of global dimension 2.

A generated by 6* with relations

Pror 4 - N MPeYeP = 0
207

AP g, AP = a3 Ko

AP = @3_ Kok and AT =0 for n > 3
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IC(A(‘H, K)

KA K) = K(AM)) identifies with

0 AP N, A P4 VMV, (P g
where N is the 3x4-matrix

(-V1 Vo V3 —Va)

N=| -V, —=V3 Vg V4

\ -V3 Vo -Vi Vo
and

[ Vo )

Vi
Vo

\ V3

Acyclicity in positive degree is straightforward
= T heorem.
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Consequences for A(T)

- Free resolution (A, A(H)) — AH) — 0 of
A as AH) @ A(H)orr_module which is mini-
mal.

— A(+) has Hochschild dimension = 2

_ 1
- Py () = a3

= exponential growth

- The latter formula also follows from the fact
that A() is the universal enveloping algebra of
the semi-direct product of the free Lie algebra
L(V1,V5,V3) by the derivation ¢ given by
(Vi) =[Vy, Vml, V(k,¢,m) = cyclic (1,2,3).

Remembering that T(K3) = K(V1, Vo, V3) is
of Hochschild dimension 1, this also implies
Hochschild-dim(A(+)) =2
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Parafermionic Algebra

B = A(F, R) cubic algebra

dim(E) =D
R = {[[x,y]®,z]®|w,y,z S E}
PBW =

Fs(t) = (%)D (1 —1t2)

= gk — dim(B) = 2+1)

B' generated by E* with a8y = v8a, 63 = 0,

Vo, B8,7,0 € E* =

Qp(t) = 1-Dt+1iD(D?-1)3 - L D2(D2—1)t4
= PgQp =1+ D(D? — 1)(D? — 4)t°>Fp(t)

If D=2 it is an Artin-Schelter algebra
If D> 3, Fp(0) # 0 so it is not Koszul



Parabosonic and Plactic Algebras

- B has a “super’ version B generated by E
with relations [{z,y},2] =0 Vz,y,z € E
super PBW =

D(D+1
1 (2 )

1 —¢2

Ps®) = (L + 7 ( = P3(t)

- Another classical useful cubic algebra P has
the same Poincaré series, the plactic algebra.
P depends on a basis (e;);cf1,.. py Of £

it is generated by the e¢; with relations

epemer = eperem for k< £ <m
eremeyp = emerey for k <4 <m

- One has Pg(t) = Pg(t) = Pp(t)
and Qp(t) = Qp(t) = Qp(¢)

- Same discussion, connection with partitions,
multiparametric deformation, etc.

109



