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NON-COMMUTATIVE DIFFERENTIAL SEOMETRY
AND NEW MODELS OF GAUGE THEORY.

Michel DUBOIS-VIOLETTE", Richard KERNER"", John MADORE”

Abstract. We investigate the non-commutative differential geometry of
the algebra CP(V) o My (€ of smooih anit)—\:aued functions on a

- manifold V. For n32 , we construct the analogue of Maxwell's theory and

interpret it as a field theory on V . It describes a U(n)-Yang-Mills field
minimally coupled to a set of fields with values in the adjoint
representation which interact among themselves through a quartic
polynomial potential. The euclidean action, which is positive, vanishes on
exactly two distinct gauge orbits which are interpreted as two vacua of
the theory. In one of the corresponding vacuum sectors, the SU(n) part of
the Yang-Mills field Is massive. For the case n=2, analogles with the
standard mode) of electroweak theory are pointed out. Finally, we briefly
describe what happens if one starts from the analogue of a general Yang-
Mills theory instead of Maxwell's theory which is a particular case.

ORSAY-LPTHE 88/58



L INTRODUCTION ARD NROTATIORS.

Let Vv be & smooth manifold and let C°(V} be the algebra of
smooth complex functions oan V considered as an abstract commutative

* -glgebra. Given a smooth complex vector bundle £ on V , one denotes by
r{E) the space of smooth sections of E. T[{E) is & finite projective

C*°(V)-module. The correspondence E —» '(E) is an equivalence of the

category of smooth complex vecter bundles on V with the category of
finite pmjectwe C®(V)-modules. There is a notion of connection on

finite projective C°(V)-modules which corresponds to the notion of
connection on vector bundles. To define it, it is convenient to use the
graded differential algebra Q(V) of complex differential forms on V . The

Lie algebra of complex vector fields on ¥V can be identified with the Lie
algebra Der{C™°(V)) of derivations of C™°(V).

In non-commutative differential gesometry, the role of C°(V) is
played by a non-commutative associative aigebrs & [11,[2]. Modules of
sections of vector bundies are replaced by finite projective s-modules
[1]1.{2]. In order to define connections on s-modules and more generally
to define non-commutalive generalization of differentisl calculus, one
needs a generalization of differential forms. There ere several non-
commutative generalizations of the de Rham complex [2],[3], [4] . Here,
as in [S], we use as generalization of the algebra of differentisl forms for
# the greded differential algebra Qp (&) introduced in [4] . We now

recsall the construction of QD{;ﬂ}.

Let Der{#) be the Lie-slgebra of derivations of & . This is &
generalization of the Lis aigabra of vector fields . Recall that & p—-cuchaih

« on the Lie algebra Der{#) with values in & is a p-linesr



antisymmetric mapping of Der{#) in 4, ie & linear mapping
© - APper(&) - 4. The space of p-cochains of Der{s#) with valuesin &

is denoted by cP(Der(4),4). The direct sum

C{Der{#),4) = Qﬂ cP(Der(4),4) is naturally o graded algebra. It is o
pe

graded differential algebra with differential d defined by

k rs
k ¥ r+s vy
detxe,x,,..,,xp} = E: {-1) ka(xg}...,xﬂh E: (-1 X X1 Xg, " ,xﬁ}
o<k<p Ogr<s<p

for « € CP{Der(A) &) and XgX{.-Xp € Der(s).  One hes

# = cOper(4),4) c C(Der{#),4) and the greded differentisl algebra

Qp(4) is defined to be the smallest differential sub-algebra of

C(Der{#4),4) which contains & . Any element of Qg{eﬂ} is & sum of

elements of the form AqdA,..dA; with Aﬂ,h1,...,ép e

b
QD{E"“{W} coincides with the graded differential algebra Q(V) of

differential forms on Y.

in this paper, we investigate the non-commutative differentisl
geometry of the sigebra & =C™ (V)M (€} of smooth M (C)-valued

function on a connected, simply-connected manifold V¥ . Some aspects of
the non-commutative geoemtry of algebras of that type were investigated

in [6] in a different context. We use Qp(#) as the analogue of the

differentisl algebra of exterior forms. We show in Section 2 thet

Qp(a) = Qp(CT(VNeQ(M(C)). The second fector Qp(M (C))  wes



investigated in [S] . We introduce in Section 3 the analogue of & metric

for 4 end the corresponding sceler product on Qp(4). in Section 4

we study connections on the free hermitian #-madules. It is shown that,
for n>2, there are several gauge orbits of flat connections . ,
In Section 5, V¥ is the (s+1)-dimensional euclidean space-time

RS*! and we describe the analogue for & of the Maxwell action. This is

an action for connections on the free hermitian £-module of rank one. We
interpret the corresponding theory in terms of & field theory on space-
time. I{ consists of a U{n)-Yang-Mills field minimally coupled to & set of
scalar fields with value in the adjoint representation which interact
smong themselves through & quartic polynomial potential. The euclidean
action, which is positive, vanishes on two distinct gauge orbits. These are
interpreted aé two vacua for the corresponding quantum field theory. in one
of the t&ﬁf@sganding vacuum sectors, the SU(n) part of the Yeng-Mills field
is massive. This sector is the most natural one from the point of view of
the non-commutative geometry of & since the vacuum there corresponds
to the pure gauge connections i.e. the pure gauge non-commutative Maxwell
potentials. For the case n=2 we discuss the anslegies and the differences
with the standard mode! of the electroweak interactions, see for example
[7] . Finally, we describe the analogue for & of the U(r)-Yang-Mills
action. It is an action for connections on the free hermitian #-module of

renk r.In Section 6 we present our conclusions.

2. DIFFERENTIAL CALCULUS FOR &£ =C™(V) @ Hn(lﬂ R

2.1 The Lie algebra Der(d). 4 =C®V) @ Hn{t} and Hn(l:) are

naturally *-algebras with units. Associated with any point X € V, there is
& homomorphism ¥, :&- M (C) of *-algebras with units defined by



(1M = fOOM, ¥ 1 eC™(V) and ¥ Me M (C). This 7, is the evaluation

ot x€V. The subalgebra C(V}®@ 1 of A is the center of & . The Lie
algebrs Der(sl) of all derivstions of & is & module over the center
C®(V)o1 of 4, so it is 8 C™(V)-module. Der(C™°(V)) is the Lie algebra
of smooth vector fields on V and Der(M_(C)) is the Lie algebra sl(n,c)

[4, 5]. it is clear that (Der(C™(¥) e 1) ® (C®(V) o Der(M,(C))) is a Lie

sub-algebra and & C“°{¥)-submodule of Der{&) . it is in fact Der(&).
g

22 LEMMA One has Der(#) = (Der{C(V) @ 1)@ (C°(V) & Ber(ﬁnt’cm
Proof. Let X be a derivation of 4. Then f |- X(f@1) is & Hn(l:}-—valued

vector fieldon V . One has X(feM) = X{{fe1)(1eM)) = X({(1eM){(Te1)), ie.
Xfe1) 18A + fol X{10A) = 10A X{(fel) + X(10A) (o1 and therefore

X(fed) 184 = 1@A X(T@1), VIeC®(V), WM €M (C). It follows that

Xfed) is in C(Viet, ¥fcC(V). This shows that the restriction
X1CPVIet is in Der(C™(V)I®@l. The mapping M |- T (X(1eM)) is s

derivation of M (C), ¥x ¢ V. This implies that the restriction X IieM (C)

is in E°°(V)®Der(ﬂn(£)}. o

2.3 The graded differentisl slgebra Qaiﬂ}. We recall that if Qq &nd Q

are graded differential algeﬁras with differentisls d, and d; then

QB@QT is naturally a graded differential algebra if one defines the product



s
by (xeulzet) = (-1 xzeyt for x¢ Qq, Y€ Qq, 2€Qp, t€Q andthe

differential d by d(x@y) = dyxey + (-1)P x®d,y, VX € Qg, Yyea,.

it follows from lemma 2.2 that
C(Der(C>*(¥)), C=(¥)eC(Der(M,(C)), M (€)

is a graded differential subaigebra of C(Der{(s4),4). On the other hand,
Qu(C™(V)} is  the  smallest  differential subalgebrs  of

CiDer(C(Y)), C°(V)) which conteins C°°(V) and Qp(M.(C)) is the
smallest differential subalgebra of C(Der Hn({‘,), ﬁnic)) which contains

M (C). Therefore the smallest differential subalgebra gﬁtm of

C(Der{s4),4) which contains & = CZ(V)eM (C) is QD(Cm{V))@QD(ﬁB{C)).
Thus one has:

Qp(#) = Qp(C T VNEQM(C)).

In fact, [4], Qp(C*(V)) is the graded differentis] algebra QY)Y of
exterior differentisl forms on V  and Qgiﬁnit}) coincides with
CDer(M,(C)), M (C)) = ﬂn{f:}@x‘xsl(n,t)*, [4, 5] So one has:

Qp(d) = Q(\’)@Hn(ﬁ@ﬁﬁ-(ﬁ,ﬁ)*.

2.4 Remark. For aigebras & and €, Q,(B@C) is generally distinct from
0n(B)@Q(C) . For instance Op(M (L)) = M(CloAslr,C)*, Qp(M(C)) =
HS{E}@ASC{E,t}* and QD(ﬁr(C}@HS({Z}) - Hr(t}@ﬁsic)@ﬁsf(rs,ti** in

fact one hes: sl{rs,€) = (sl{r C)esi{s, Casl{r Clet)m(tasli{s, C)).



25 Qp{#) as bigraded differentisl algebrs Qpld) s naturelly a

5 L
bigraded algebra if one sets Qré (ﬂ)=e"{v)aa§mn(cn. wWe identify

(V) , (resp. QD(Hn{t))}, with the differentisl subaligebra Q{V)®1, {resp.
1e0(M (C))), of Qp(sd). We denote by d the differential of Op{d). Let @
be the unique antiderivation of Qn(sA) extending the exterior differential
of Q(V) such that d’QD(Hn{C}} =0 and let d° be the unigue
antiderivation of Q,(#) extending the differential of Qp(M,(C)} such that
d"Q(¥) = 0. Then d' is of bidegree {1,0), d" is of bidegree (0,1) and one
has: d=d + d", 42 =d? = d"d' + d'd" = 0. In other words, Qniaﬂ) is 8

bigraded differentisl algebra.

26 Reslity #A is a *-sigebra. We denote by Derp(#) the real Lie
subatgebra of Der(s) of derivations X such that X(A™) =1(X A)*. One has

Derg(#) = (Derg(C(V)@NB(C _ (V)@Derg(M,(€)) where  Derg(C™(V))
is the real Lie algebra of real vector fields on V, Derp(M (C))) is the Lie

algebra su{n) for its adjoint action on HH(C) and E:(‘f‘) is the resl
algebra of reai functions on V. Correspondingly, there is an antilinear

involution © |- won Qgiﬂ) which extends the involution of & . 0One has

oed’ = o @’ for o € Q(Y) and o ¢ Qp{M(C)) where o j>ol is the

complex conjugaison of differential forms on V and o > is the



involution of QD(HH(Q) defined in [5]. An element & of QD(eﬂ) will

be said to be rea], (resp. imaginary), if © =, (resp. © = - ©).

3. HMETRICFOR £ AND SCALAR PRODUCT OR ﬁuiﬂ-)-

3.1 Basis for P‘tn{t} and expressions for d”. For the differential calculus
of M (C} (or Qn(M (€))) we use the notations of [S], except that, since
we consider Qn{ﬂnit)} as embedded in QB(a&), the differential of

anﬂn‘if}) will be denoted d* {or d} 1o be consistent with 25. We shall

use a basis E K € {!,...,nz—i} of hermitian traceless nxn matrices which is

. 1
orthonormal in the sense that - Tr (Ek5£3=ﬁu- So one has &

multiplication tabie in M (€) of the form:

i
m

with Sk.em = Sekm € R and Ckfm =-C 2km € R. Associativity then
implies that SKem is completely symmetric, that Ck £m is compietely

antisymmetric and that they satisfy some relations {See [8] for instance}.

25 Let

It follows from these relations that one has z Ekfl" gkfﬁ =2n rs -

k£
us introduce the bosis @ = ad(if,) of Dergfﬂn(ti)=su{n). One has



[84.3p1 = 2, Cy prnipn - Define 8¥ ¢ Qé{ﬂn{c}} c Qp(#), ke {1,.,n%-1}, by
HE

Hk(af} = & el for ke {1,...,:12—1}. One has in Qn(A).

aX-gKa vaed (2 and 8%ef = - gfek (3).

The differential d” is then characterized by:

"o =0, VoL € OY) (4) B =~ 2 CrpmEm® O
m.£

-aK i m . . .
and d8" =- 3 z Crem fa {6} . By introducing the canonical
£m

1
element 8 of Qp(M (C)), (5] defined by 8 =85 and using (4), (5) cen

“be rewritten in the form:
dA=i[8,A], YAec d (57

£ 3 s k - = i_ =
The relation (6) may be inverted to yield 8" = 2 Z Ep E, 0Ep .
£
The differential d° is characterized by the fact thet it coincides with

the exterior differentisl on Q(V) C Qnieﬂi and thet it sstisfies d'E, = 0
and d'8K = 0 for ke{1,.,n%-1}.

3.2 Metric for # . We now assume that V is an oriented riemannian

2

menifold with metric ds2. In local coordinates (x¥), ds? = gwdxgadx"’

and (g¥") will denote the inverse matrix of (gw).



in [S] we introduced what we called there the canonical riemannian

structure for Hn{{:} which becomes with conventions adopted here

2 Bk@ Bk. It is natural to combine these structures by introducing the
k

132 i _
metric t!s2 + (—) Z Hk@ SE for &, where — is a positive constant.
H D b g
k

We have in mind the case where ¥V = RSH is the (s+1)-dimensional

euclidean space time and where ds? = Z dxte dx¥ has the dimension of
p

1 :
the square of a length. In this case - is a length, ie. m is a mass in

standard units where hi=c = 1.

3.3 Scalar product for Qaiﬁi. Associated with the metric and the

orientation of V , there is the star isomorphism o |- *o of Q(V) and
the corresponding positive hermitian scalar product on Q(Y) such that

CalB>= J AA*R for A PeOPVW) and <if>=01if o end B have
v

different degrees. Strictly speaking, this scalar preduct is defined on Q(V)

only if V is compact. Otherwise one has to restrict attention to forms for

which < ic > <oo, for instance to forms with compact support. However

we siial]l not be concerned with this here since the scalar product will be

used Qﬁlg to write formal lagrangians for euclidean field theories.

10



in [S] we constructed a ster isomorphism of QD(ﬂnttl) associoted

to Z K@ 8% and then defined a scalar product on Qp(M,(€)) by using this
K

star isomorphism and a generalization of integration (essentialiy the

2
; ing . 8k o¥ ! > 6k 6K
trace). The only thing that the rescaling 8°® 0 l-a-( ) 0" 0
k k

changes is the scalar product ( &"If™> of "B ¢ QE(P‘%B({:)) . It becomes

2

\n-1
(;) b m—iﬂ—times the scalar product of [S] which corresponds to the

case m=1.

We now define a scalar product <.l > on QDLﬂ} by

CAURAIFSP™ > = < IP> K7™, Yo B eQly), Yo preQpM (TN,

This is just the scalar product we would obtain from

2
2, (1 S ke ok : ;
ds* + (m) 8"@ 8" by proceeding as in [5]
K

4. CONNECTIONS ON HERMITIAN #-MODULES.

4.1 Hermitian #£-modules. Anelement P of & is positive if P = A%A

for some A ¢ & The set A° of positive element of & is a convex cone
in & Let M be sright sl-module. A hermition structure on M is s
#A-valued positive definite hermitian form on M, (¥ 3)l-h(¥ &) d

11



(¥,2eM), such that one hes h(VA,%B)=A"(V 8B, VWV eecM,

¥A,B e A Positive definite means that (¥, ¥} e 4", ¥¥ ¢ M, and that
h('¥, ¥} =0 implies ¥ =0.
A right #-module equipped with a hermitian structure will be called

a hermitian #-madule.

A" is neturelly e right sA-module : (A,,.AJA=(AA.  AA)

"a'(#q ,,,,, &r} cedl vAed It is a hermitian A-module if one defines its
a=r

hermitian structure by h{(A...,A).(B,,...B)) = Z A*.B..
a=1

Conversely, let 9" be a free hermitian #A-module of rank r with

hermitian structure h . Then one can mnsirut:t an crthonormal basis (ea}

8 € {l,-..r}r of 3 ie e s € 3¢ such thet hle, e )=5_,1 Yab E:{ 1,.}.

we shall call such sn orthonormal basis a gauge. Given such a gauge,

¥ ¢ 3¢ canbe written ¥ = ), e A, inaunique wey with A_ed.
a

Furthermore if §=Zaasa is another element of & , then

h('v,2) = z A*.B,. Thus each gauge gives an isomorphism 3¢ > 4" of
a

hermitian #-modules. A change of orthonormal basis will be called a

gsuge transformation. Such a gauge transformation U is & unitary element

of AeMC) = CT(V)eM (C)eM(C) = CT(V)eM, (). So U 1is a Ulnr)-

valued functionon V

12



42 Connections. Let J® be a right d-module A Qn-connection or
1
simply & connection on M [2] is a linear mapping V: M - Jﬂ,g QD(ﬂ}

such that V(24) =(V&)A + 8gdA, ¥8e M, YAc & If M is a hermitian
#A-module with hermitian structure h, ¥ will be called a hermitian
connection if it satisfies dh(2,¥) = Ve, V) + hE VVY), ¥ Ve M.
Connections slways exist on projective modules of finite type [2].
Let ¥ be aconnectionon /M . One extends ¥V as a linear mapping,
again denoted by ¥, of Jblgr Qn(4) in itsellf setting [2] :

V(¢ed) = (VE)a + $eda, ¥& e M, Yo € Op(4). Consider
V2 00> MeQN(A) . One hos VAEA) = (V2B)A, VEE M, VA<

Thus ?‘?

V.

is a right #-module homomorphism which is the curvature of

4.3 Connections on the free hermitisn #-module of rank r . We consider
A" as a hermitian right -module as explained in 4.1. The canonical basis
of A" will be denoted by e = (ey...e). We denote by 4/, the group of

gauge transformations, ie. the group of unitery elements of

M (4) = AeM (). Any othonormal basis, or gauge, of A" is of the form

el foraunique Ue ‘U‘r.

.....

a f - b
Op € Qp{#). Furthermore, ¥ is hermitien if and only if m:= -w, . We

13



b
write the relstions Ve =e @, in the form Ve=ew with

© = (o) € M (Qp () = O(s)aM (C). The element & of O (MM (C)

will be called the component of ¥V in e or simply the component of V.

i
Each we Qﬁ(sﬂ}@ﬁr{t} is the component in e of a unigue connection V.

we could define similarily the component of ¥ in an arbitrary gauge e U:

If <« is its component in e , then its component in el is
U'10U+U“1du. Here however, we consider U'*mﬂﬂi"d{] as the

component in e of another connection denoted ?U. Vis ?U, Ue ‘Lfr is
a right action of the gauge group "Lfr on the space of connections on &'
vV is hermitian if and oniy if V is hermitian. The set (ViU e 47} wini

be called the gsuge orbit of V. In the same way, ?Ee=eg ¥ith

P€ Qéﬁﬂ)aﬂr{t). One has ¢ =dw+ ©? in the algebra Qp{djeM {T)

where d is defined by d{clex) = dolex, Y € Qnl(d), Vxe ﬁr{t}.' ¢ will

be called the component of the curvature ?2 of V.If ¢ is the component

of T2 then the component of the curvature (V)2 of ¥V is U"‘p u.

44 Flat hermitian connections on &7 A connection is called a flat

connection if its curvaeture venishes. Thus & connection V on &' with
component & is flat if and only if do + ©Z=01f U € ifr, then wY is

flat if and only if ¥ is fial.

14



(eu™ 1
For each gauge eU™! We ) there is o unique connection v

-1
(el
suchthat ¥ (eU'])=€l. its component in e is v 'dU so one has

CTR N »
vV = and it is s flat hermitisn connection. These connections

(e)
v Li, Ue ‘“U'r, will be called pure gauge connections. The set of pure gauge

connections is a gouge orbit of flat hermitian connections on A In the
commutative case where & =C"(V) they ere the only flat hermitien

connections on &, However for #A = ::"""W)@Hn(c) with n> 2., there

are other gauge orbits of hermitian flat connections on A" which we now

gescribe.

we now assume that # =C™(V)eM (€} with n>2 and we let r
cas . . o 2
denote a positive integer with r> 1. Llet Ry, ke {1,2,.n°-1},

o € {0,1,..,N(n,r)} be a set of antihermitian elements of ﬂn{ll:)@ﬂrim such

0 P _ .
thet R, =0, Ry =if@1, [EkE ] ngfm tie. RY is o

representation of su(n) in C"eC"), Yo k£, and such thet, if (R,) are

nZ-1 antithermition elements of M (C)eM (C) satisfying [R R,}=

15



> CpmRey ¥k, then there is o unique o € {0,1..N(nN} and 8
m

a4
unitary V € M (C)oM (€) such thet R, = V™ 'Rk Y, ¥k

in other words (R™) is s complete set of multually inequivalent

o
antihermitian representations of suln) in cec’ Let V be the

& 1
connection on &’ with component {Ek—iEkaﬂEkenniﬂlsﬁritl,

_ o
va € {0,1,.. N(n,r)}. The V are hermitisn connections and one has the

following result.

o _
45 THEOREM. a) The ¥ are flat hermitian connections and, if o is

o g
distinct of P, the gauge orbifsaf ¥ andof V are distinct

b) A hermitian connection ¥ on &' is flst if and only

” ,
if it is sn element of the geuge orbitof ¥ for some o € {0, 1. Nnr}},

o
ie V= vU with Ue ‘U’r and < € {0,.. N{n,r}

Proof. Let ¥V be s hermitian connection on 47 with component & . Write
¢ in the form r:.: =A+ {Bk—iEksi)Bk where A is a one-form on V with
values in the antihermitian elements of Hﬁttlgﬂr{ﬂ and where the By
are functions on ¥ with values in the antihermitian elements of

Nn(t}aﬂr{ﬁ, One has:

16



.
4o+ &% = 0A + A2 + (0B, + (48,165 + 5 ([B.Bp 1~ D, Cypm By gket
m

(7).

¥ is flat if end only if dA+A’=0, @B, +[AB]=0 vk and

o 4
{Ek,B £} =Z Ckfm By ¥k, £. It follows that the ¥ are flat connections.

m
B %y TR Iy
if ¥V = V-, U may be chosen to be constant and then Ry =U "Ry U

which is in contradiction with the assumplions on the R‘i.

Suppose that ¥V is a flal hermitian connection. Then dA+ &2 =0

o 4
implies A = U '0U and[B,,B,)= 2 Ciopm By ImPplies By = V™ Ry Y for

m

some o €{0,1,. N(nn} and UV € ‘Lf’r . Furthermore  d'By, + {A,Bk]= 0,

ol
implies u*{uv*‘swu‘*ﬁ 0 so one can choose U and ¥ such thet

%y
U =Y. This implies V = .0
46 Remarks. ) Under a gauge transformaticn V- ?U,' Ue ‘Ur, A

and Bk as above transform as Al- U’1AU + U'Td‘ﬂ and Bk - u“Bku.

Thus the Bk transform homogeneousty. This is in fact the reason whi we

represent the component @ of V inthe form w=A+ {Bk - iEk@i}Ek and

17



& o
why we introduce the component of ¥V in the form (R, - iEkai}Bk. it is

connected with what was described in {S] lemma 7.3 for matrix sigebras.

1 (e)
b} Onehss ¥V = ¥V so the pure gauge connections on 4"

i
are the elements of the gauge orbit of V.

c) Forany r= 1, Ninyr)> 1 (n>2) soone has at least
, 0
two gauge orbits of flat hermitian connections on A" The orbit of ¥ and
1
the orbit of ¥V  which is the set of pure gauge connections. in the case
r=1, N(n,1) = {, so one has only these two gauge orbits.
d} Formulae like (7} natursily sppesr in the double-

bundle structures. See for example [9].
S. HMODELS OF GAUGE THEORY.

5.1 Classical euclidean Maxwell! and Ya

-Mills sctions. Throughout

Section 5, V = RS*! s the (s+1)}-dimensional euclidean space-time with
=S

metric ds? = z ()2 and A = Emms”)@ﬁnﬁl}. We recall here in the
y=0

case n=1, ie. & =CPRS*), the definition of the Maxwell action end, in
genersi that of the U{r)-Yang-HMills action.

The Maxwell action is an action for connections on. 8 U(1)-principal
bundte over R®*!. One can also say that it is an saction for hermitian
connections on @ hermitian vector bundle of rank one over ®RS*!. Finally,

since Es*i is contractible, it is an action for hermitian connections on

18



the free hermilian Cmms*i}—maduie of rank one. Let ¥V be such a

i
connection with component A = :&Hd@:@ caltv)= QH{C’:@(RS”)), (the

Maxwell potential), and component F =§ Fwdxi:'hdx of the curvature

?2, {the corresponding electromagnetic field) . One has FEW = aUAV - %Ay.

The Maxwell action S{V) for V is

H
oyl = - i _ 2  s+1
s =IvAZ =7 [ 2 @, - aa)? ¢ (8)

pv
This sction is gauge invariant, positive, and vanishes only on the
gauge orbit of pure gauge connections. Two connections in the same gauge
orbit are considered as physically equivalent.

In the same way, the U(r)-Yang-Mills action is an action for hermitian
connections on the free hermitian c®®S* HY-module of rank r . If ¥ is

such 8 connection with component A=A daxt ¢ Ql(‘u‘}@l‘!r{(:), the Yang-

v
Mills action is given by

1 1 2y 4S+1, | ‘
SV == 7 | DETr @A, - ahy  [AA DD 5 (8.

v
This action is again geuge inveriant, positive, and vanishes only if V isa

pure gauge connection. It coincides with Maxwell action for r=1.

5.2 Mexwell action for &= tmiﬁs+1)@ﬂnic). it is natural to generalize

the Maxwell action for arbitrary positive integer n as 19212 on

hermitian connection ¥V on the free hermitisn #-module of rank one. Let

1
(&eﬁﬁ(:ﬂ) be the component of v then H"Zr’gil2 means

2
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<do+ (.}2 fdo + {,:-2 > with the scalar product defined in 33 on Qn(ﬂ).

.s'j
-1
Since from 3.3, we know that there is an oversll scale factor (;)
\

in front of this scalar product we define the generalized Maxwell

2
action 8s SV =(m" "' (do+ w0 ldo+ 0. writing again © as

W= ;&de@ + {Bk - iEk} Elk ¥ith antihermitian n¥n-matrix-valued

functions él:" € {0,1,..8} and By. ke {1,...,n2-1}, 5(¥) is given by

1 2
S(V) = - g | 2 Tritaa, - a8, (8 A 1D -
by

Y 4
m_ 2, m 2
- jz Tri(3, By + [A) B 1Y) - 5 j > T [B,.B,1- > CpmBr >
AK k.2 m

which can also be*written

§
S == [ 2T )+ T ITN) »
Eg*{
1 2
S orgh w3, gt ®
k.2 A m
where

_ _chv _ _ T W 4
Fro=dyAy= 8,4, +[4,A ] =Ft" 4 =m B, Vot = 8, + {'Eﬁh-‘k] = V%%,

Under a gauge transformation V|- ‘FU, UeV,, the #‘g transform

U U‘fa U, the ¢y transform as 4y |- u";ku and the

-1
8s AEI U AE’ v

??a*k transform as Vb = U"'(?ﬁk)!j. The action {9) is gauge
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invariant, positive and, for n 2> 2 vanishes, {in view of 4.5), on the gauge

orbit of (éu = 0, ¢, = 0} and on the gauge orbit of (Ag =0, ¢ =im EJ) .

5.3 Discussion. The action {9} can be interpreted as the euctidean action

RSH

of a field theory on . 1t is then the euclideen action for a U(n)-Yang-

2

Mills field minimaly coupled to n“-1 scalar fields *k with values in the

adjoint representation of U(n) which interact among themselves through
g guartic polynomial potential.

¥e now assume that n>2 and s+1322 Then the two gauge orbits
where the action venishes are separated by sn infinite barrier; there is no
instanton interpolating between these two gauge orbits. This follows from
the translation invariance. Therefore, by standard arguments [7] , each of
these orbits corresponds to a vacuum for the corresponding quantum field

theery in Minkowski space. Let Qq be the vacuum corresponding to the
gouge orbit of {AE =90,¢,=0) andlet Q, be the one corresponding to the
gauge orbit of {AH =0,¢ =im Ek)'

To specify a quantum theory, one has to choose & vacuum. Then in order
to develop the theory, one has to use the field veriables adapted to the
corresponding vacuum sector. These field varisbles must vanish up to s
geuge transformation on the geuge orbit corresponding to the chosen
vacuum in order that the vacuum expectation values of the associated
quantum fields vanishup to a gsdge transformation.

Thus the variables ’E"g and *g are adapted to the vacuum sector of

Qo corresponding to the gauge orbit of (Aj =0, ¢ = 0). In this sector,

one has on ordinary massless U(n)-Yeng-Mills field described by the Au
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minimaily coupied to the fields ¢, which are massive with the same mass

The variables adapted to the vacuum sector of QI are the AE‘ and the

’-l-fk = ‘i( -im Ek' The translstion *k = \Lfk gives & quadratic term in the

traceless part {i.e. the SU(n) part) of the ‘é‘g which becomes massive

with the mass m, -\& nes. The U{1) part of the AU remsins massless
and the mass specltrum of the "Fk becomes complicated. We shall describe

this spectrum in the case n=2.

54 The case n=2 in the sector of Qi' The vacuum !‘.21 corresponds to

the gauge orbit of pure gauge connections on the free hermitian A-module

of rank one. The vacuum sector of Q, is therefore very natural from the
point of view of the underiying non-commutstive differential geometry.

We naw assume that & = CW{ESH)@NEEQ and we compute the mass

spectrum of the %‘k (for *;}1.}- For that we wrile ‘Fk as

ﬂ .
llik = i{wki + WﬁEEJ and decompose 'P‘E intg its irreductible parts sas

wt £ £ £ ot £ L, . L
= ﬁ = =
M T K -HIk + c::k where T 3 il-*f , (Uk} is symmetric and

traceless and {c{) is antisymmetric. One then obtains from (9) and

. . ) 0 '
‘45;{ = - im Ek the following mass spectrum. The fields ‘Fk have mass

mﬁ=2m, the field T has mass m,. = 2m, the fields E’E have mass
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my = dm sand the fields x::;'i are massless = O . Notice thst, in

bidee 4

contrast to the ¢ , the W, transform inhomogeneously under a geuge

transformatien and that one can fix the gauge by imposing ::fg = 0.

55 Geperalizalion. One can generalize similarly the U(r}-Yang-rills
action by writing the action for & hermitian connection on the free
hermitian &i-module of rank r.The action has again the form (9) but now

the hi:‘ and the ¢, are nrx nr-antihermitian-matrix-valued. Thus, using

the theorem 5.4, there sre as many gauge orbits of connections on which
the action vanishes as there are unitary classes of anti-hermitian
e

representations of SuU(n} in One thus has vacua Q

{i;
o € {0,1,..N(n,r)}, for the quantum theory. The number N{n,r) grows very
quickly with r for n>2.

6. CONCLUSIOR

For A= Cm{84}sﬁn(t) ,i.e. on 4-dimensional space-time with n=2,

the theory described in 5.2, 5.3,5.4 has similarities with the bosonic part
of the standsrd model of electroweak theory The 4, plays the role of the

Higgs fields and the sector of 91 is similar to the broken phase. One has

then a U(1)xSU(2) gauge theory snd the mechanism which produces @
mass for the SU(2) peart of the gsuge field is very similar to the Higgs
mechanism. There are however two main differences. The first one is that

here one has two stable gauge inveriant vacua. The second one is that since
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the ¢, Or the *Fk are compenent of & hermitlian connection, they are

sntihermitisn and thus, they de not interact with the electromagnetic field

i.e. with the U(1) part of the A, . Thus there is nothing her like the

,
Weinberg angle and the U{1)-gauge field is compietely decoupled.

From the point of view of perturbation theory in r? , the theory we
have presented is renormalizable. To carry out the renormalization program

one has to use standard BRS. technigue. However the ususl BRS

: 2
invariance does not forbid terms like Tr (@k) with arbitrary coefficients.

These would break the form of {9) which is the square norm of & curvalure
and one must therefore find an extended BRS. or some other invariance
which takes into account the fact that the action is & functional of a
curvature. Another point which we did not discuss here is the theory of
spinor fields in the context of our model. Work on these points is currently
is progress.

in [10] we give an informal discussion of the medels of gauge theory

presented here with a description of the analogue of the scalar field for
4= EW{RS+1)®Nﬁ(€) and we discute the analogies and the differences of

our work with the theories of Kaluza-Klein type.
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